Based on a series of graduate lectures, this book provides an introduction to algebraic geometric methods in the theory of complex linear differential equations. Starting from basic notions in complex algebraic geometry, it develops some of the classical problems of linear differential equations and ends with applications to recent research questions related to mirror symmetry. The fundamental tool used within the book is that of a vector bundle with connection. There is a detailed analysis of the singularities of such objects and of their deformations, and coverage of the techniques used in the resolution of the Riemann-Hilbert problem and Birkhoffs problem. An approach to Frobenius manifolds using isomonodromic deformations of linear differential equations is also developed. Aimed at graduate students and researchers, the book assumes some familiarity with basic complex algebraic geometry.

Rezensionen ( 0 )
Every Friday we give gifts for the best reviews.
The winner is announced on the pages of ReadRate in social networks.
Zitate (0)
Sie können als Erste ein Zitat veröffentlichen.